Brazilian Journal of Biology (Mar 2022)

Analysis of Germin-like protein genes family in Vitis vinifera (VvGLPs) using various in silico approaches

  • M. Ilyas,
  • A. Rahman,
  • N. H. Khan,
  • M. Haroon,
  • H. Hussain,
  • L. Rehman,
  • M. Alam,
  • A. Rauf,
  • D. S. Waggas,
  • S. Bawazeer

DOI
https://doi.org/10.1590/1519-6984.256732
Journal volume & issue
Vol. 84

Abstract

Read online

Abstract Germin-like proteins (GLPs) play an important role against various stresses. Vitis vinifera L. genome contains 7 GLPs; many of them are functionally unexplored. However, the computational analysis may provide important new insight into their function. Currently, physicochemical properties, subcellular localization, domain architectures, 3D structures, N-glycosylation & phosphorylation sites, and phylogeney of the VvGLPs were investigated using the latest computational tools. Their functions were predicted using the Search tool for the retrieval of interacting genes/proteins (STRING) and Blast2Go servers. Most of the VvGLPs were extracellular (43%) in nature but also showed periplasmic (29%), plasma membrane (14%), and mitochondrial- or chloroplast-specific (14%) expression. The functional analysis predicted unique enzymatic activities for these proteins including terpene synthase, isoprenoid synthase, lipoxygenase, phosphate permease, receptor kinase, and hydrolases generally mediated by Mn+ cation. VvGLPs showed similarity in the overall structure, shape, and position of the cupin domain. Functionally, VvGLPs control and regulate the production of secondary metabolites to cope with various stresses. Phylogenetically VvGLP1, -3, -4, -5, and VvGLP7 showed greater similarity due to duplication while VvGLP2 and VvGLP6 revealed a distant relationship. Promoter analysis revealed the presence of diverse cis-regulatory elements among which CAAT box, MYB, MYC, unnamed-4 were common to all of them. The analysis will help to utilize VvGLPs and their promoters in future food programs by developing resistant cultivars against various biotic (Erysiphe necator and in Powdery Mildew etc.) and abiotic (Salt, drought, heat, dehydration, etc.) stresses.

Keywords