Klinicist (Mar 2022)
Renalase – a new instrument in multicomponent heart failure assessment
Abstract
Heart failure (HF) remains a serious problem in Russian and world health care due to the growing morbidity and mortality from complications of heart failure, despite the development and implementation of programs for the early detection and treatment of heart failure in asymptomatic patients. Currently, a large number of new biological markers have been studied that could serve as a laboratory tool for diagnosing and predicting the course of heart failure, but only brain natriuretic peptides have found application in real clinical practice. Renalase is a recently discovered cytokine that is synthesized by the kidneys and released into the blood. To date, seven subtypes of renalase have been found, each of which plays a different physiological role in the human body. Renalase is usually positioned as a signaling molecule that activates cytoprotective intracellular signals, leading to a decrease in blood pressure and protection of the heart muscle. The concentration of renalase freely circulating in the bloodstream of an adult is approximately 3–5 ng / ml. Currently, the level of renalase is determined by the enzyme immunoassay with a detection range of 3.12 to 200 ng / ml, while the minimum detectable concentration of the marker is less than 1.38 ng / ml. The presence of missense polymorphism of renalase is associated with myocardial dysfunction. Data from animal and human studies have shown that renalase plays a key role in the metabolism of catecholamines and in cardioprotective processes. Studies have shown the contribution of renalase to the occurrence of cardiovascular diseases: ischemic heart disease, arterial hypertension, diabetes mellitus, and aortic stenosis. Moreover, detailed protocols of multicenter prospective studies have demonstrated that functional polymorphism of the renalase gene was associated with myocardial hypertrophy in patients with aortic stenosis, hypertension, metabolic syndrome, unstable angina pectoris and stable forms of coronary artery disease, as well as in patients receiving renal replacement therapy. Based on these data and further studies, renalase has been proposed as a predictive biomarker of ischemia in patients with coronary microvascular dysfunction, as well as a predictor of clinically significant progression of chronic kidney disease in patients with cardiovascular diseases.Our review presents data on the role of renalase in heart failure. Further study of the structure and function of renalase, as well as future clinical studies, will allow determining the diagnostic, prognostic and, possibly, therapeutic significance of this biological marker in HF and other cardiovascular diseases.
Keywords