Journal of Dairy Science (Jul 2024)

Genetic parameters and trends for Johne's disease in US Holsteins: An updated study

  • Larissa C. Novo,
  • Kristen L. Parker Gaddis,
  • Xiao-Lin Wu,
  • T.M. McWhorter,
  • Javier Burchard,
  • H. Duane Norman,
  • João Dürr,
  • Robert Fourdraine,
  • Francisco Peñagaricano

Journal volume & issue
Vol. 107, no. 7
pp. 4804 – 4821

Abstract

Read online

ABSTRACT: Johne's disease (JD) is an infectious enteric disease in ruminants, causing substantial economic loss annually worldwide. This work aimed to estimate JD's genetic parameters and the phenotypic and genetic trends by incorporating recent data. It also explores the feasibility of a national genetic evaluation for JD susceptibility in Holstein cattle in the United States. The data were extracted from a JD data repository, maintained at the Council on Dairy Cattle Breeding, and initially supplied by 2 dairy record processing centers. The data comprised 365,980 Holstein cows from 1,048 herds participating in a voluntary control program for JD. Two protocol kits, IDEXX Paratuberculosis Screening Ab Test (IDX) and Parachek 2 (PCK), were used to analyze milk samples with the ELISA technique. Test results from the first 5 parities were considered. An animal was considered infected if it had at least one positive outcome. The overall average of JD incidence was 4.72% in these US Holstein cattle. Genotypes of 78,964 SNP markers were used for 25,000 animals randomly selected from the phenotyped population. Variance components and genetic parameters were estimated based on 3 models, namely, a pedigree-only threshold model (THR), a single-step threshold model (ssTHR), and a single-step linear model (ssLR). The posterior heritability estimates of JD susceptibility were low to moderate: 0.11 to 0.16 based on the 2 threshold models and 0.05 to 0.09 based on the linear model. The average reliability of EBVs of JD susceptibility using single-step analysis for animals with or without phenotypes varied from 0.18 (THR) to 0.22 (ssLR) for IDX and from 0.14 (THR) to 0.18 (ssTHR and ssLR) for PCK. Despite no prior direct genetic selection against JD, the estimated genetic trends of JD susceptibility were negative and highly significant. The correlations of bulls' PTA with economically important traits such as milk yield, milk protein, milk fat, somatic cell score, and mastitis were low, indicating a nonoverlapping genetic selection process with traits in current genetic evaluations. Our results suggest the feasibility of reducing the JD incidence rate by incorporating it into the national genetic evaluation programs.

Keywords