Genome Medicine (Aug 2020)

CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations

  • Shuang Li,
  • K. Joeri van der Velde,
  • Dick de Ridder,
  • Aalt D. J. van Dijk,
  • Dimitrios Soudis,
  • Leslie R. Zwerwer,
  • Patrick Deelen,
  • Dennis Hendriksen,
  • Bart Charbon,
  • Marielle E. van Gijn,
  • Kristin Abbott,
  • Birgit Sikkema-Raddatz,
  • Cleo C. van Diemen,
  • Wilhelmina S. Kerstjens-Frederikse,
  • Richard J. Sinke,
  • Morris A. Swertz

DOI
https://doi.org/10.1186/s13073-020-00775-w
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/capice .

Keywords