Remote Sensing (Dec 2023)

Reconstruction of Continuous High-Resolution Sea Surface Temperature Data Using Time-Aware Implicit Neural Representation

  • Yang Wang,
  • Hassan A. Karimi,
  • Xiaowei Jia

DOI
https://doi.org/10.3390/rs15245646
Journal volume & issue
Vol. 15, no. 24
p. 5646

Abstract

Read online

Accurate climate data at fine spatial resolution are essential for scientific research and the development and planning of crucial social systems, such as energy and agriculture. Among them, sea surface temperature plays a critical role as the associated El Niño–Southern Oscillation (ENSO) is considered a significant signal of the global interannual climate system. In this paper, we propose an implicit neural representation-based interpolation method with temporal information (T_INRI) to reconstruct climate data of high spatial resolution, with sea surface temperature as the research object. Traditional deep learning models for generating high-resolution climate data are only applicable to fixed-resolution enhancement scales. In contrast, the proposed T_INRI method is not limited to the enhancement scale provided during the training process and its results indicate that it can enhance low-resolution input by arbitrary scale. Additionally, we discuss the impact of temporal information on the generation of high-resolution climate data, specifically, the influence of the month from which the low-resolution sea surface temperature data are obtained. Our experimental results indicate that T_INRI is advantageous over traditional interpolation methods under different enhancement scales, and the temporal information can improve T_INRI performance for a different calendar month. We also examined the potential capability of T_INRI in recovering missing grid value. These results demonstrate that the proposed T_INRI is a promising method for generating high-resolution climate data and has significant implications for climate research and related applications.

Keywords