Electrochemical transformation of limestone into calcium hydroxide and valuable carbonaceous products for decarbonizing cement production
Qixian Xie,
Lili Wan,
Zhuang Zhang,
Jingshan Luo
Affiliations
Qixian Xie
Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
Lili Wan
Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
Zhuang Zhang
Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
Jingshan Luo
Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Corresponding author
Summary: The cement industry is one of the largest contributors to global CO2 emissions, which has been paid more attention to the research on converting the CO2 released by the cement production process. It is extremely challenging to decarbonize the cement industry, as most CO2 emissions result from the calcination of limestone (CaCO3) into CaO and CO2. In this work, we demonstrate an in situ electrochemical process that transforms CaCO3 into portlandite (Ca(OH)2, a key Portland cement precursor) and valuable carbonaceous products, which integrates electrochemical water splitting and CO2 reduction reaction with the chemical decomposition of CaCO3. With different metal catalyst electrodes (like Au, Ag, In, Cu, and Cu nanowires electrodes), we have achieved various valuable carbonaceous products, such as CO, formate, methane, ethylene, and ethane during the electrochemical CO2 process. Our work demonstrates a proof of concept for green and sustainable cement production.