Heliyon (Feb 2024)

Three-year black carbon aerosol synthesis over a pristine location surrounded by hillocks in Haryana state, India

  • P.C.S. Devara,
  • M.P. Raju,
  • S.M. Sonbawne,
  • K. Vijayakumar

Journal volume & issue
Vol. 10, no. 3
p. e25128

Abstract

Read online

The three-year Black Carbon (BC) aerosol measurements made during 2020, 2021, and 2022 over a rural location, namely, Panchgaon, surrounded by Aravali hillocks (elevation of about 400–600 m) have been analyzed with an aim to determine their optical and radiative characteristics, seasonal and long-term variations in mass concentration. The affinity between these parameters and associated pollutants and planetary boundary layer height (PBLH), affected by the orography, to delineate their role in mass concentration changes with time have been investigated. The coincident OPAC (Optical Properties of Aerosols and Clouds) Model-derived aerosol optical depth (AOD), and single scattering albedo (SSA) have been compared with the observed BC mass concentration, and also with synchronous satellite measurements. The year-to-year variability analysis of the data reveals that the rate of increase of BC concentration is high. The variability was low due to the reasons explained. It implies that the year-to-year variability in BC concentration at the study site depends on the source strength modulated by the valley-driven meteorology. Added, the percentage departures of BC concentration show positive values (higher concentration) during morning and evening hours, which could be due to more anthropogenic activities while it shows negative values during afternoon hours and lower boundary layer heights. The force exerted by the radiation due to BC aerosols at the bottom of the atmosphere (BOA), and in the atmosphere (ATM) are almost equal in magnitude and negative, while that at the top-of-the-atmosphere (TOA) is smaller and positive, indicating that BC aerosols in the study region cools the atmosphere at the BOA and warms the ATM and TOA, which indirectly reveals the dominant role of long-range transport phenomenon at higher levels as compared to the surface level.

Keywords