Bulletin of Mathematical Sciences (Apr 2020)
Primary decompositions of unital locally matrix algebras
Abstract
We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number s there exists a unital locally matrix algebra A having the Steinitz number s and not isomorphic to a tensor product of finite-dimensional matrix algebras.
Keywords