Mathematical Biosciences and Engineering (Jan 2023)

FAPI-Net: A lightweight interpretable network based on feature augmentation and prototype interpretation

  • Xiaoyang Zhao,
  • Xinzheng Xu,
  • Hu Chen,
  • Hansang Gu,
  • Zhongnian Li

DOI
https://doi.org/10.3934/mbe.2023267
Journal volume & issue
Vol. 20, no. 4
pp. 6191 – 6214

Abstract

Read online

With the increasing application of deep neural networks, their performance requirements in various fields are increasing. Deep neural network models with higher performance generally have a high number of parameters and computation (FLOPs, Floating Point Operations), and have the black-box characteristic. This hinders the deployment of deep neural network models on low-power platforms, as well as sustainable development in high-risk decision-making fields. However, there is little work to ensure the interpretability of the model in the research on the lightweight of the deep neural network model. This paper proposed FAPI-Net (feature augmentation and prototype interpretation), a lightweight interpretable network. It combined feature augmentation convolution blocks and the prototype dictionary interpretability (PDI) module. The feature augmentation convolution block is composed of lightweight feature-map augmentation (FA) modules and a residual connection stack. The FA module could effectively reduce network parameters and computation without losing network accuracy. The PDI module can realize the visualization of model classification reasoning. FAPI-Net is designed regarding MobileNetV3's structure, and our experiments show that the FAPI-Net is more effective than MobileNetV3 and other advanced lightweight CNNs. Params and FLOPs on the ILSVRC2012 dataset are 2 and 20% lower than that on MobileNetV3, respectively, and FAPI-Net with a trainable PDI module has almost no loss of accuracy compared with baseline models. In addition, the ablation experiment on the CIFAR-10 dataset proved the effectiveness of the FA module used in FAPI-Net. The decision reasoning visualization experiments show that FAPI-Net could make the classification decision process of specific test images transparent.

Keywords