Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity
Jørgen Smeby,
Kushtrim Kryeziu,
Kaja C.G. Berg,
Ina A. Eilertsen,
Peter W. Eide,
Bjarne Johannessen,
Marianne G. Guren,
Arild Nesbakken,
Jarle Bruun,
Ragnhild A. Lothe,
Anita Sveen
Affiliations
Jørgen Smeby
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Kushtrim Kryeziu
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
Kaja C.G. Berg
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Ina A. Eilertsen
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Peter W. Eide
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
Bjarne Johannessen
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Marianne G. Guren
K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
Arild Nesbakken
K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
Jarle Bruun
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
Ragnhild A. Lothe
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Anita Sveen
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway;; K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Corresponding author.
Background: PARP inhibitors are active in various tumour types beyond BRCA-mutant cancers, but their activity and molecular correlates in colorectal cancer (CRC) are not well studied. Methods: Mutations and genome-wide mutational patterns associated with homologous recombination deficiency (HRD) were investigated in 255 primary CRCs with whole-exome sequencing and/or DNA copy number data. Efficacy of five PARP inhibitors and their molecular correlates were evaluated in 93 CRC cell lines partly annotated with mutational-, DNA copy number-, and/or gene expression profiles. Post-treatment gene expression profiling and specific protein expression analyses were performed in two pairs of PARP inhibitor sensitive and resistant cell lines. Findings: A subset of microsatellite stable (MSS) CRCs had truncating mutations in homologous recombination-related genes, but these were not associated with genomic signatures of HRD. Eight CRC cell lines (9%) were sensitive to PARP inhibition, but sensitivity was not predicted by HRD-related genomic and transcriptomic signatures. In contrast, drug sensitivity in MSS cell lines was strongly associated with TP53 wild-type status (odds ratio 15.7, p = 0.023) and TP53-related expression signatures. Increased downstream TP53 activity was among the primary response mechanisms, and TP53 inhibition antagonized the effect of PARP inhibitors. Wild-type TP53-mediated suppression of RAD51 was identified as a possible mechanism of action for sensitivity to PARP inhibition. Interpretation: PARP inhibitors are active in a subset of CRC cell lines and preserved TP53 function may increase the likelihood of response.