BMC Infectious Diseases (Sep 2011)

Amplified fragment length polymorphism of clinical and environmental <it>Vibrio cholerae </it>from a freshwater environment in a cholera-endemic area, India

  • Sharma Naresh C,
  • Kumar Rahul,
  • Sharma Ram K,
  • Taneja Neelam,
  • Mishra Arti,
  • Sharma Meera

DOI
https://doi.org/10.1186/1471-2334-11-249
Journal volume & issue
Vol. 11, no. 1
p. 249

Abstract

Read online

Abstract Background The region around Chandigarh in India has witnessed a resurgence of cholera. However, isolation of V. cholerae O1 from the environment is infrequent. Therefore, to study whether environmental nonO1-nonO139 isolates, which are native to the aquatic ecosystem, act as precursors for pathogenic O1 strains, their virulence potential and evolutionary relatedness was checked. Methods V. cholerae was isolated from clinical cases of cholera and from water and plankton samples collected from freshwater bodies and cholera-affected areas. PCR analysis for the ctxA, ctxB, tcpA, toxT and toxR genes and AFLP with six primer combinations was performed on 52 isolates (13 clinical, 34 environmental and 5 reference strains). Results All clinical and 3 environmental isolates belonged to serogroup O1 and remaining 31 environmental V. cholerae were nonO1-nonO139. Serogroup O1 isolates were ctxA, tcpA (ElTor), ctxB (Classical), toxR and toxT positive. NonO1-nonO139 isolates possessed toxR, but lacked ctxA and ctxB; only one isolate was positive for toxT and tcpA. Using AFLP, 2.08% of the V. cholerae genome was interrogated. Dendrogram analysis showed one large heterogeneous clade (n = 41), with two compact and distinct subclades (1a and 1b), and six small mono-phyletic groups. Although V. cholerae O1 isolates formed a distinct compact subclade, they were not clonal. A clinical O1 strain clustered with the nonO1-nonO139 isolates; one strain exhibited 70% similarity to the Classical control strain, and all O1 strains possessed an ElTor variant-specific fragment identified with primer ECMT. Few nonO1-nonO139 isolates from widely separated geographical locations intermingled together. Three environmental O1 isolates exhibited similar profiles to clinical O1 isolates. Conclusion In a unique study from freshwater environs of a cholera-endemic area in India over a narrow time frame, environmental V. cholerae population was found to be highly heterogeneous, diverse and devoid of major virulence genes. O1 and nonO1-nonO139 isolates showed distinct lineages. Clinical isolates were not clonal but were closely related, indicating accumulation of genetic differences over a short time span. Though, environment plays an important role in the spread of cholera, the possibility of an origin of pathogenic O1 strains from environmental nonO1-nonO139 strains seems to be remote in our region.