PLoS ONE (Jan 2013)

Evolution of Sindbis virus with a low-methionine-resistant phenotype is dependent both on a pre-existing mutation and on the methionine concentration in the medium.

  • Victor Stollar,
  • Virginia Mensah,
  • Sandra Adams,
  • Mei-Ling Li

DOI
https://doi.org/10.1371/journal.pone.0060504
Journal volume & issue
Vol. 8, no. 3
p. e60504

Abstract

Read online

SVlm21 is a mutant of Sindbis virus which was isolated by serial passage of virus in mosquito cells maintained in low-methionine medium; it therefore has a low-methionine-resistant (LMR) phenotype. This phenotype requires mutations at nts 319 and 321; these mutations result in Arg to Leu and Ser to Cys changes at positions 87 and 88 respectively in the viral methyl transferase, nsP1. To better understand the genesis of SVlm21, we carried out serial passages of viruses having only one of these amino acid changes, but in mosquito cells maintained in normal methionine-medium. Whether the passage was begun with SV319 or with SV321, the dominant virus population which emerged always acquired the second SVlm21 amino acid change. However, when the passage was begun with virus having neither the nt 319 or the nt321 mutation, even after many passages neither of these mutations was seen in the passaged virus population. Virus with the LMR phenotype emerged earlier when the virus encoded a wild-type RDRP (passage 4) rather than the mutant RDRP encoded by SVpzf (passage 7). When the methionine concentration in the medium of mosquito cells was increased to 250 µM, more than 20 passages were required until the LMR phenotype predominated. Competition experiments were carried out to compare the relative fitness of SVlm21, SVwt, SV319 and SV321 to each other. Our results indicated that SVlm21 was dominant to SVwt, as well as to both SV319 and SV321. However, SV319 and SV321 were able to co-exist with SVwt implying that in these mixed infection the presence of SVwt inhibited the emergence of SVlm21. Finally, our experiments highlight how a virus population by mutation and selection can adapt to the intracellular concentration of a simple metabolite, S-adenosylmethionine.