PLoS ONE (Jan 2019)

Dissimilarity between living and dead benthic foraminiferal assemblages in the Aveiro Continental Shelf (Portugal).

  • Maria Virgínia Alves Martins,
  • Johann Hohenegger,
  • Fabrizio Frontalini,
  • João Manuel Alveirinho Dias,
  • Mauro Cesar Geraldes,
  • Fernando Rocha

DOI
https://doi.org/10.1371/journal.pone.0209066
Journal volume & issue
Vol. 14, no. 1
p. e0209066

Abstract

Read online

This study compares living (LA) and dead (DA) benthic foraminiferal assemblages and identifies different factors that possibly cause differences in the distribution of both assemblages in the Aveiro Continental Shelf (Portugal). A total of 44 sediment samples was collected during summers of 1994 and 1995 along transects (east-west direction) and between 10 and 200 m water depth. Complex statistical analyses allow us to compare the abundance and composition of the LAs and DAs in function of depth, grain-size and total organic matter in all studied stations even in those where the numbers of individuals were rare in one or both assemblages. The highest densities and diversities of the LAs are found in the middle continental shelf on gravel deposits (coarse and very coarse sands) mostly due to the substrate stability, reduced deposition of fine sedimentary particles, availability of organic matter with high quality related to oceanic primary productivity likely induced by upwelling events, and oxygenated porewaters conditions. The DAs have, in general, higher densities and diversities than the LAs. In the outer continental shelf, the dissimilarity between both assemblages is higher due to the accumulation of tests, low dilution by sedimentary particles and scarcity of living foraminifera. Based on the comparison of LAs and DAs and considering the characteristics of the study area and the species ecology, it has been possible to understand the cause of temporal deviation between the LAs and DAs of benthic foraminifera. This deviation is much more pronounced in the inner shelf where the energy of the waves and the currents induce very dynamic sedimentary processes preventing the development of large LAs and the preservation of DAs. Some deviation also occurs in the middle shelf due to the seasonal loss of empty tests. The most well-preserved time-averaged DAs were found in the outer continental shelf.