Malaria Journal (Nov 2012)

Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors

  • Dugassa Sisay,
  • Lindh Jenny M,
  • Torr Steve J,
  • Oyieke Florence,
  • Lindsay Steven W,
  • Fillinger Ulrike

DOI
https://doi.org/10.1186/1475-2875-11-374
Journal volume & issue
Vol. 11, no. 1
p. 374

Abstract

Read online

Abstract Background Little is known about how malaria mosquitoes locate oviposition sites in nature. Such knowledge is important to help devise monitoring and control measures that could be used to target gravid females. This study set out to develop a suite of tools that can be used to study the attraction of gravid Anopheles gambiae s.s. towards visual or olfactory cues associated with aquatic habitats. Methods Firstly, the study developed and assessed methods for using electrocuting nets to analyse the orientation of gravid females towards an aquatic habitat. Electric nets (1m high × 0.5m wide) were powered by a 12V battery via a spark box. High and low energy settings were compared for mosquito electrocution and a collection device developed to retain electrocuted mosquitoes when falling to the ground. Secondly, a range of sticky materials and a detergent were tested to quantify if and where gravid females land to lay their eggs, by treating the edge of the ponds and the water surface. A randomized complete block design was used for all experiments with 200 mosquitoes released each day. Experiments were conducted in screened semi-field systems using insectary-reared An. gambiae s.s. Data were analysed by generalized estimating equations. Results An electric net operated at the highest spark box energy of a 400 volt direct current made the net spark, creating a crackling sound, a burst of light and a burning smell. This setting caught 64% less mosquitoes than a net powered by reduced voltage output that could neither be heard nor seen (odds ratio (OR) 0.46; 95% confidence interval (CI) 0.40-0.53, p Conclusion A square of four e-nets with yellow sticky boards as a collection device can be used for quantifying the numbers of mosquitoes approaching a small oviposition site. Shiny sticky surfaces attract gravid females possibly because they are visually mistaken as aquatic habitats. These materials might be developed further as gravid traps. Anopheles gambiae s.s. primarily land on the water surface for oviposition. This behaviour can be exploited for the development of new trapping and control strategies.

Keywords