Asia Pacific Journal of Innovation and Entrepreneurship (Nov 2024)

Evaluation of innovation efficiency of high-tech enterprise based on DEA and Malmquist index under the background of sustainable development

  • Liwei Wang,
  • Tianbo Tang

DOI
https://doi.org/10.1108/APJIE-10-2023-0190
Journal volume & issue
Vol. 18, no. 4
pp. 340 – 354

Abstract

Read online

Purpose – This paper aims to promote the higher quality development of high-tech enterprises in China. While science and technology have greatly promoted human civilization, resources have been excessively consumed and the environment has been sharply polluted. Therefore, it is particularly important for current enterprises to make use of scientific and technological innovation to maximize the benefits of mankind, minimize the loss of nature, and promote the sustainable development of our country. Design/methodology/approach – By using DEA-Banker-Charnes-Cooper (BCC) model and DEA-Malmquist model, this paper comprehensively examines the innovation efficiency of high-tech enterprises from both static and dynamic perspectives, and conducts a provincial comparative study with the panel data of ten representative provinces from 2011 to 2020. Findings – The research findings are as follows: the rapid number increase of high-tech enterprises in most provinces (cities) is accompanied by an ineffective input–output efficiency; the quality of high-tech enterprises needs to comprehensively examine both input–output efficiency and total factor productivity; and there is not a positive correlation between element investment and innovation performance. Research limitations/implications – Because the DEA model used in this paper assumes that the improvement direction of invalid units is to ensure that the input ratio of various production factors remains unchanged but sometimes the proportion of scientific and technological activities personnel and the total research and development investment is not constant. In the future, the nonradial DEA model can be considered for further research. Due to historical data statistics, more provinces, cities and longer panel data are difficult to obtain. The samples studied in this paper mainly refer to the provinces and cities that ranked first in the number of national high-tech enterprises in 2020. Limited by the number of samples, DEA analysis failed to select more input and output indicators. In the future, with the accumulation of statistical data, the existing efficiency analysis will be further optimized. Originality/value – Aiming at the misunderstanding of emphasizing quantity and neglecting quality in the cultivation of high-tech enterprises, this paper comprehensively uses DEA-BCC model and DEA Malmquist index decomposition method to make a comprehensive comparative study on the development of high-tech enterprises in ten representative provinces (cities) from two aspects of static efficiency evaluation and dynamic efficiency evaluation.

Keywords