iScience (Apr 2022)

Data-driven prediction of battery failure for electric vehicles

  • Jingyuan Zhao,
  • Heping Ling,
  • Junbin Wang,
  • Andrew F. Burke,
  • Yubo Lian

Journal volume & issue
Vol. 25, no. 4
p. 104172

Abstract

Read online

Summary: Despite great progress in battery safety modeling, accurately predicting the evolution of multiphysics systems is extremely challenging. The question on how to ensure safety of billions of automotive batteries during their lifetime remains unanswered. In this study, we overcome the challenge by developing machine learning techniques based on the recorded data that are uploaded to the cloud. Using charging voltage and temperature curves from early cycles that are yet to exhibit symptoms of battery failure, we apply data-driven models to both predict and classify the sample data by health condition based on the observational, empirical, physical, and statistical understanding of the multiscale systems. The best well-integrated machine learning models achieve a verified classification accuracy of 96.3% (exhibiting an increase of 20.4% from initial model) and an average misclassification test error of 7.7%. Our findings highlight the need for cloud-based artificial intelligence technology tailored to robustly and accurately predict battery failure in real-world applications.

Keywords