Natural Hazards and Earth System Sciences (May 2019)
Loss assessment of building and contents damage from the potential earthquake risk in Seoul, South Korea
Abstract
After the 2016 Gyeongju earthquake and the 2017 Pohang earthquake struck the Korean peninsula, securing financial stability regarding earthquake risks has become an important issue in South Korea. Many domestic researchers are currently studying potential earthquake risk. However, empirical analyses and statistical approaches are ambiguous in the case of South Korea because no major earthquake has ever occurred on the Korean peninsula since the Korean Meteorological Agency started monitoring earthquakes in 1978. This study focuses on evaluating possible losses due to earthquake risk in Seoul, the capital of South Korea, by using a catastrophe model methodology integrated with GIS (Geographic Information Systems). Building information, such as structure and location, is taken from the building registration database and the replacement cost for buildings is obtained from insurance information. As the seismic design code in the KBC (Korea Building Code) is similar to the seismic design code of the UBC (Uniform Building Code), the damage functions provided by HAZUS-Multi-hazard (HAZUS-MH) are used to assess the damage state of each building in event of an earthquake. A total of 12 earthquake scenarios are evaluated by considering the distribution and characteristics of active fault zones on the Korean peninsula and damages, with total loss amounts are calculated for each of the scenarios. The results of this study show that loss amounts due to potential earthquakes are significantly lower than those of previous studies. The challenge of this study is to implement an earthquake response spectrum and to reflect the actual asset value of buildings in Seoul.