Heliyon (Apr 2024)

Structural elucidation and development of azelaic acid loaded mesoporous silica nanoparticles infused gel: Revolutionizing nanodrug delivery for cosmetics and pharmaceuticals

  • Tahreem Arshad,
  • Haji Muhammad Shoaib Khan,
  • Naveed Akhtar,
  • Hanasul Hanan,
  • Muhammad Delwar Hussain,
  • Mohsin Kazi

Journal volume & issue
Vol. 10, no. 8
p. e29460

Abstract

Read online

This research aimed to enhance dermal delivery and optimize depigmentation therapy by designing mesoporous silica nanoparticles (MSNs) encapsulating azelaic acid (AZA) within a gel matrix. The MSNs were prepared using the sol-gel method. After subsequent processes, including acid extraction and drug loading, were then elucidated through PDI, size, zeta-potential, entrapment efficiency, nitrogen adsorption assay, FE-SEM, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, and tyrosinase inhibition assay, were employed to assess the formulation. In-vitro stability tests for both AZA-MSN gel (AZCG) and AZA-loaded mesoporous silica gel (AZMG) were conducted at 8 °C, 25 °C, 40 °C, and 40 °C + 75 % RH, encompassing assessments of color, liquefaction, pH, and conductivity. Our findings showed a notable entrapment efficiency of 93.46 % for AZA-MSNs, with FE-SEM illustrating porous spherical MSNs. The particle size of AZA-MSNs was determined to be 211.9 nm, with a pore size of 2.47 nm and XRD analysis confirmed the amorphous state of AZA within the MSN carriers. Rheology examination indicated a non-Newtonian flow, while ex-vivo rat skin permeation studies conducted in a phosphate buffer (pH = 5.5) demonstrated a biphasic release pattern with 85.53 % cumulative drug permeation for AZA-MSNs. Overall, the study endorse the potential of AZA-MSNs as an efficacious and stable formulation for AZA delivery, highlighting their promise in addressing pigmentation concerns compared to conventional approaches.

Keywords