Applied Sciences (Oct 2022)
Study of In-Plane Mechanical Properties of Novel Ellipse-Based Chiral Honeycomb Structure
Abstract
In this paper, we propose an elliptical anti-tetrachiral honeycombs structure (E-antitet) with in-plane negative Poisson’s ratio (NPR) and orthogonal anisotropy. The analytical and numerical solutions of the in-plane Poisson’s ratio and Young’s modulus are given by theoretical derivations and finite element method (FEM) numerical simulations and are verified experimentally by a 3D printed sample. Finally, we analyzed the influences of different parameters on the in-plane Poisson’s ratio and Young’s modulus of E-antitet. The results show that the proposed E-antitet can achieve a smaller Poisson’s ratio and larger Young’s modulus in the desired direction compared with the anti-tetrachiral honeycombs structure (antitet), and moreover, the E-antitet has a more flexible means of regulation than the antitet. The analytical results of this paper provide meaningful guidance for the design of chiral honeycomb structures.
Keywords