Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices
Lixue Tang,
Shiyu Cheng,
Luyao Zhang,
Hanbing Mi,
Lei Mou,
Shuaijian Yang,
Zhiwei Huang,
Xinghua Shi,
Xingyu Jiang
Affiliations
Lixue Tang
Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
Shiyu Cheng
Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
Luyao Zhang
Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Hanbing Mi
Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
Lei Mou
Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
Shuaijian Yang
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
Zhiwei Huang
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
Xinghua Shi
Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
Xingyu Jiang
Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China; Corresponding author
Summary: Stretchable, biocompatible devices can bridge electronics and biology. However, most stretchable conductors for such devices are toxic, costly, and regularly break/degrade after several large deformations. Here we show printable, highly stretchable, and biocompatible metal-polymer conductors by casting and peeling off polymers from patterned liquid metal particles, forming surface-embedded metal in polymeric hosts. Our printable conductors present good stretchability (2,316 S/cm at a strain of 500%) and repeatability (ΔR/R <3% after 10,000 cycles), which can satisfy most electrical applications in extreme deformations. This strategy not only overcomes large surface tension of liquid metal but also avoids the undesirable sintering of its particles by stress in deformations, such that stretchable conductors can form on various substrates with high resolution (15 μm), high throughput (∼2,000 samples/hour), and low cost (one-quarter price of silver). We use these conductors for stretchable circuits, motion sensors, wearable glove keyboards, and electroporation of live cells. : Polymers; Alloys; Electronic Materials Subject Areas: Polymers, Alloys, Electronic Materials