Contemporary Clinical Dentistry (Jan 2017)

Immunophenotypic and molecular analysis of human dental pulp stem cells potential for neurogenic differentiation

  • Nikhat Fatima,
  • Aleem A Khan,
  • Sandeep K Vishwakarma

DOI
https://doi.org/10.4103/ccd.ccd_998_16
Journal volume & issue
Vol. 8, no. 1
pp. 81 – 89

Abstract

Read online

Background: Growing evidence shows that dental pulp (DP) tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Aims: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs) in vitro. Settings and Design: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH) and non-ADH (NADH) neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical Analysis Used: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. Results: Immunophenotypic analysis of DPSCs revealed> 80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71), and> 30% for chemotactic factor (CXCR3). These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. Conclusions: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications.

Keywords