AIMS Mathematics (Jan 2024)

Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus

  • Saad Ihsan Butt,
  • Muhammad Nasim Aftab ,
  • Hossam A. Nabwey,
  • Sina Etemad

DOI
https://doi.org/10.3934/math.2024268
Journal volume & issue
Vol. 9, no. 3
pp. 5523 – 5549

Abstract

Read online

The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval $ [\mathrm{b_{0}}, \mathrm{b_{1}}]\subset\Re $, we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at $ \mathrm{b_{0}}\in[\mathrm{b_{0}}, \mathrm{b_{1}}]\subset\Re $. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point $ \mathrm{b_{1}} $, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.

Keywords