Aerospace (Feb 2024)

Autonomous and Earth-Independent Orbit Determination for a Lunar Navigation Satellite System

  • Joshua J. R. Critchley-Marrows,
  • Xiaofeng Wu,
  • Yosuke Kawabata,
  • Shinichi Nakasuka

DOI
https://doi.org/10.3390/aerospace11020153
Journal volume & issue
Vol. 11, no. 2
p. 153

Abstract

Read online

In recent years, the number of expected missions to the Moon has increased significantly. With limited terrestrial-based infrastructure to support this number of missions, as well as restricted visibility over intended mission areas, there is a need for space navigation system autonomy. Autonomous on-board navigation systems in the lunar environment have been the subject of study by a number of authors. Suggested systems include optical navigation, high-sensitivity Global Navigation Satellite System (GNSS) receivers, and navigation-linked formation flying. This paper studies the interoperable nature and fusion of proposed autonomous navigation systems that are independent of Earth infrastructure, given challenges in distance and visibility. This capability is critically important for safe and resilient mission architectures. The proposed elliptical frozen orbits of lunar navigation satellite systems will be of special interest, investigating the derivation of orbit determination by non-terrestrial sources utilizing celestial observations and inter-satellite links. Potential orbit determination performances around 100 m are demonstrated, highlighting the potential of the approach for future lunar navigation infrastructure.

Keywords