Foods (Jan 2023)

Lid Films of Poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate)/Microfibrillated Cellulose Composites for Fatty Food Preservation

  • Eva Hernández-García,
  • Amparo Chiralt,
  • Maria Vargas,
  • Sergio Torres-Giner

DOI
https://doi.org/10.3390/foods12020375
Journal volume & issue
Vol. 12, no. 2
p. 375

Abstract

Read online

The present work evaluates the food packaging performance of previously developed films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced with atomized microfibrillated cellulose (MFC) compatibilized by a reactive melt-mixing process. To this end, the novel green composite films were originally applied herein as lids in aluminum trays to preserve two dissimilar types of fatty foods, namely minced pork meat and sunflower oil. Results indicated that the PHBV/MFC films effectively preserved the physicochemical and microbiological quality of pork meat for one week of storage at 5 °C. In particular, the compatibilized green composite lid film yielded the lowest weight loss and highest oxidative stability, showing values of 0.935% and 0.78 malonaldehyde (MDA)/kg. Moreover, none of the packaged meat samples exceeded the acceptable Total Aerobial Count (TAC) level of 5 logs colony-forming units (CFU)/g due to the improved barrier properties of the lids. Furthermore, the green composite films successfully prevented sunflower oil oxidation in accelerated oxidative storage conditions for 21 days. Similarly, the compatibilized PHBV/MFC lid film led to the lowest peroxide value (PV) and conjugated diene and triene contents, with respective values of 19.5 meq O2/kg and 2.50 and 1.44 g/100 mL. Finally, the migration of the newly developed PHBV-based films was assessed using two food simulants, proving to be safe since their overall migration levels were in the 1–3 mg/dm2 range and, thus, below the maximum level established by legislation.

Keywords