We demonstrate, for the first time, that a quantum flux parametron (QFP) is capable of acting as both isolator and amplifier in the readout circuit of a capacitively shunted flux qubit (CSFQ). By treating the QFP like a tunable coupler and biasing it such that the coupling is off, we show that T_{1} of the CSFQ is not impacted by Purcell loss from its low-Q readout resonator (Q_{e}=760) despite being detuned by only 40 MHz. When annealed, the QFP amplifies the qubit’s persistent current signal such that it generates a flux qubit-state-dependent frequency shift of 85 MHz in the readout resonator, which is over 9 times its linewidth. The device is shown to read out a flux qubit in the persistent current basis with fidelities surpassing 98.6% with only 80 ns integration, and reaches fidelities of 99.6% when integrated for 1 μs. This combination of speed and isolation is critical to the readout of high-coherence quantum annealers.