Energies (Nov 2020)

Research on Multi-Attribute Decision-Making in Condition-Based Maintenance for Power Transformers Based on Cloud and Kernel Vector Space Models

  • Renxi Gong,
  • Siqiang Li,
  • Weiyu Peng

DOI
https://doi.org/10.3390/en13225948
Journal volume & issue
Vol. 13, no. 22
p. 5948

Abstract

Read online

Decision-making for the condition-based maintenance (CBM) of power transformers is critical to their sustainable operation. Existing research exhibits significant shortcomings; neither group decision-making nor maintenance intention is considered, which does not satisfy the needs of smart grids. Thus, a multivariate assessment system, which includes the consideration of technology, cost-effectiveness, and security, should be created, taking into account current research findings. In order to address the uncertainty of maintenance strategy selection, this paper proposes a maintenance decision-making model composed of cloud and vector space models. The optimal maintenance strategy is selected in a multivariate assessment system. Cloud models allow for the expression of natural language evaluation information and are used to transform qualitative concepts into quantitative expressions. The subjective and objective weights of the evaluation index are derived from the analytic hierarchy process and the grey relational analysis method, respectively. The kernel vector space model is then used to select the best maintenance strategy through the close degree calculation. Finally, an optimal maintenance strategy is determined. A comparison and analysis of three different representative maintenance strategies resulted in the following findings: The proposed model is effective; it provides a new decision-making method for power transformer maintenance decision-making; it is simple, practical, and easy to combine with the traditional state assessment method, and thus should play a role in transformer fault diagnosis.

Keywords