Water (Mar 2020)
Forecasting of Landslides Using Rainfall Severity and Soil Wetness: A Probabilistic Approach for Darjeeling Himalayas
Abstract
Rainfall induced landslides are creating havoc in hilly areas and have become an important concern for the stakeholders and public. Many approaches have been proposed to derive rainfall thresholds to identify the critical conditions that can initiate landslides. Most of the empirical methods are defined in such a way that it does not depend upon any of the in situ conditions. Soil moisture plays a key role in the initiation of landslides as the pore pressure increase and loss in shear strength of soil result in sliding of soil mass, which in turn are termed as landslides. Hence this study focuses on a Bayesian analysis, to calculate the probability of occurrence of landslides, based on different combinations of severity of rainfall and antecedent soil moisture content. A hydrological model, called Système Hydrologique Européen Transport (SHETRAN) is used for the simulation of soil moisture during the study period and event rainfall-duration (ED) thresholds of various exceedance probabilities were used to characterize the severity of a rainfall event. The approach was used to define two-dimensional Bayesian probabilities for occurrence of landslides in Kalimpong (India), which is a highly landslide susceptible zone in the Darjeeling Himalayas. The study proves the applicability of SHETRAN model for simulating moisture conditions for the study area and delivers an effective approach to enhance the prediction capability of empirical thresholds defined for the region.
Keywords