Measuring the internal dynamic temperature of alkali metal vapor cells is crucial for enhancing the performance of numerous atomic devices. However, conventional methods of measuring the internal dynamic temperature of the cell are prone to errors. To obtain a more accurate internal dynamic temperature of the alkali metal vapor cell, a temperature measuring method based on the data fusion of the Kalman filter has been proposed. This method combines the indirect temperature measurement signal from a resistance temperature detector with the atomic absorption spectrometric temperature measurement signal. This provides a high-accuracy set of internal dynamic temperatures in the cell. The atomic vapor density calculated from the final fusion results is 37% average lower than that measured by external wall temperature measurements, which is in line with the conclusions reached in many previous studies. This study is highly beneficial to measure the temperature of alkali metal vapor cells.