Journal of Orthopaedic Surgery and Research (Aug 2021)

Clinical and radiological outcomes in three-dimensional printing assisted revision total hip and knee arthroplasty: a systematic review

  • Rui Zhang,
  • Jiajun Lin,
  • Fenyong Chen,
  • Wenge Liu,
  • Min Chen

DOI
https://doi.org/10.1186/s13018-021-02646-5
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background This study investigates whether three-dimensional (3D) printing-assisted revision total hip/knee arthroplasty could improve its clinical and radiological outcomes and assess the depth and breadth of research conducted on 3D printing-assisted revision total hip and knee arthroplasty. Methods A literature search was carried out on PubMed, Web of Science, EMBASE, and the Cochrane Library. Only studies that investigated 3D printing-assisted revision total hip and knee arthroplasty were included. The author, publication year, study design, number of patients, patients’ age, the time of follow-up, surgery category, Coleman score, clinical outcomes measured, clinical outcomes conclusion, radiological outcomes measured, and radiological outcomes conclusion were extracted and analyzed. Results Ten articles were included in our review. Three articles investigated the outcome of revision total knee arthroplasty, and seven investigated the outcome of revision total hip arthroplasty. Two papers compared a 3D printing group with a control group, and the other eight reported 3D printing treatment outcomes alone. Nine articles investigated the clinical outcomes of total hip/knee arthroplasty, and eight studied the radiological outcomes of total hip/knee arthroplasty. Conclusion 3D printing is being introduced in revision total hip and knee arthroplasty. Current literature suggests satisfactory clinical and radiological outcomes could be obtained with the assistance of 3D printing. Further long-term follow-up studies are required, particularly focusing on cost-benefit analysis, resource availability, and, importantly, the durability and biomechanics of customized prostheses using 3D printing compared to traditional techniques.

Keywords