Remote Sensing (Mar 2024)

Spatial–Temporal Approach and Dataset for Enhancing Cloud Detection in Sentinel-2 Imagery: A Case Study in China

  • Chengjuan Gong,
  • Ranyu Yin,
  • Tengfei Long,
  • Weili Jiao,
  • Guojin He,
  • Guizhou Wang

DOI
https://doi.org/10.3390/rs16060973
Journal volume & issue
Vol. 16, no. 6
p. 973

Abstract

Read online

Clouds often cause challenges during the application of optical satellite images. Masking clouds and cloud shadows is a crucial step in the image preprocessing workflow. The absence of a thermal band in products of the Sentinel-2 series complicates cloud detection. Additionally, most existing cloud detection methods provide binary results (cloud or non-cloud), which lack information on thin clouds and cloud shadows. This study attempted to use end-to-end supervised spatial–temporal deep learning (STDL) models to enhance cloud detection in Sentinel-2 imagery for China. To support this workflow, a new dataset for time-series cloud detection featuring high-quality labels for thin clouds and haze was constructed through time-series interpretation. A classification system consisting of six categories was employed to obtain more detailed results and reduce intra-class variance. Considering the balance of accuracy and computational efficiency, we constructed four STDL models based on shared-weight convolution modules and different classification modules (dense, long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and transformer). The results indicated that spatial and temporal features were crucial for high-quality cloud detection. The STDL models with simple architectures that were trained on our dataset achieved excellent accuracy performance and detailed detection of clouds and cloud shadows, although only four bands with a resolution of 10 m were used. The STDL models that used the Bi-LSTM and that used the transformer as the classifier showed high and close overall accuracies. While the transformer classifier exhibited slightly lower accuracy than that of Bi-LSTM, it offered greater computational efficiency. Comparative experiments also demonstrated that the usable data labels and cloud detection results obtained with our workflow outperformed the results of the existing s2cloudless, MAJA, and CS+ methods.

Keywords