PLoS ONE (Jan 2012)
The effects of rhythmicity and amplitude on transfer of motor learning.
Abstract
We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation.