Acta Crystallographica Section E (Jun 2013)

The low-symmetry lanthanum(III) oxotellurate(IV), La10Te12O39

  • Peng Li Wang,
  • Yurij Mozharivskyj

DOI
https://doi.org/10.1107/S1600536813012191
Journal volume & issue
Vol. 69, no. 6
pp. i36 – i36

Abstract

Read online

Single crystals of decalanthanum(III) dodecaoxotellurate(IV), La10Te12O39, were obtained by reacting La2O3 and TeO2 in a CsCl flux. Its crystal structure can be viewed as a three-dimensional network of corner- and edge-sharing LaO8 polyhedra with TeIV atoms filling the interstitial sites. The TeIV atoms with their 5s2 electron lone pairs distort the LaO8 polyhedra through variable Te—O bonds. Among the six unique Te sites, four of them define empty channels extending parallel to the a axis. The formation of these channels is a result of the stereochemically active electron lone pairs on the TeIV atoms. The atomic arrangement of the Te—O units can be understood on the basis of the valence shell electron pair repulsion (VSEPR) model. A certain degree of disorder is observed in the crystal structure. As a result, one of the five different La sites is split into two positions with an occupancy ratio of 0.875 (2):0.125 (2). Also, one of the oxygen sites is split into two positions in a 0.559 (13):0.441 (13) ratio, and one O site is half-occupied. Such disorder was observed in all measured La10Te12O39 crystals.