Revue des Énergies Renouvelables (Sep 2012)
Approche neuronale pour l’estimation des transferts thermiques dans un fluide frigoporteur diphasique
Abstract
La propriété associative des réseaux neurologiques artificiels et de leur capacité inhérente d’apprendre et identifier des rapports fortement non linéaires et complexes, les trouve idéalement convenus à une étendue des applications large dans le domaine du froid direct et indirect. Cet article traite les applications potentielles des réseaux neurones artificiels dans la particularité des problèmes thermiques soulevés par l’utilisation des fluides frigoporteurs diphasiques, tels que les coulis de glace (mélange de solutions binaires aqueuses et de cristaux de glace) dans les installations de distribution du froid. L’utilisation de ce type d’installation permet de diminuer, les quantités des fluides frigorigènes traditionnels, ainsi que les problèmes qu’ils engendrent, de réduire les volumes de stockage et les consommations d’électricité. La stratégie d’obtention du RN s'articule sur l'élaboration d'un programme sur MATLAB, comportant plusieurs boucles où on fait varier les algorithmes d’apprentissages, les fonctions d’activations, le nombre de couches cachées et le nombre de neurones dans chaque couche, afin de minimiser la fonction du coût sous contrainte d’une erreur relative fixée. Le modèle neuronal conçu a permis d’une part de reproduire avec une très bonne précision les données expérimentales tirées directement de littérature et d’autre part une estimation meilleure et plus précise des valeurs calculées par rapport aux modèles classiques (basé sur la formulation générale de la méthode enthalpique) des transferts thermiques dans le cas des solutions binaires dispersées sous forme d’émulsions ou de mini-émulsions subissant un changement de phase tirées directement de littérature.