Stem Cell Research & Therapy (Feb 2019)
Dermal mesenchymal stem cells: a resource of migration-associated function in psoriasis?
Abstract
Abstract Background Psoriasis is a chronic and systemic, immune-mediated, inflammatory disease. Mesenchymal stem cells have effects on the inflammatory microenvironment, including regulating the proliferation, differentiation, recruitment, and migration of immunocytes. Methods To investigate whether dermal mesenchymal stem cells (DMSCs) may act on migration of immunocytes in psoriasis patients, 22 patients with psoriasis and 22 matching healthy controls (age and sex in this study) were recruited. Seven migration-associated genes including chemokine like receptor-1 (CMKLR-1), collagen type VIII alpha1 (COL8A-1), neuropilin and tolloid-like 2 (NETO-2), nik-related kinase (NRK), secreted frizzled-related protein (SFRP), sulfate 6-O-endosulfatase 2 (SULF-2), and synaptotagmin-like protein 2 (SYTL-2) were analyzed by quantitative real-time reverse transcription PCR and western blot. Peripheral blood-derived mononuclear cells (PBMCs) migration to MSCs was measured using a Thanswell chamber system. Results We observed the upregulation of CMKLR-1, COL8A-1, NETO-2, NRK, SYTL-2, and SULF-2 in dermal mesenchymal stem cells derived from patients with psoriasis at both mRNA and protein level, however, a significant downregulation of SFRP-2 between two groups. By contrast, there were no significant between-group differences at the mRNA and protein expression level of NETO-2 and SULF-2. The migration assay showed that in vitro the normal PBMC migration to psoriatic DMSC group was a 6.3 ± 0.7-fold increase compared with the control group. Conclusions The results may suggest a potential pathogenetic involvement of DMSCs on migration of monocytes in psoriasis. Immune responses are regulated at the level of DMSCs, which probably represent the cells primarily involved in the “psoriatic march.”
Keywords