Microbial Cell Factories (Apr 2025)
Introduction of human m6Am methyltransferase PCIF1 facilitates the biosynthesis of terpenoids in Saccharomyces cerevisiae
Abstract
Abstract Background The application of synthetic biology techniques has been recognized as an efficient alternative for the biosynthesis of high-value natural products, and various metabolic engineering strategies have been employed to develop microbial cell factories. However, exploration of more efficient metabolic pathway optimization strategies is still required to further improve the producing potential of microbial cell factories to meet the industrial requirements. Results In this study, we found that the introduction of human N6,2’-O-dimethyladenosine (m6Am) methyltransferase PCIF1 into Saccharomyces cerevisiae significantly promoted the biosynthesis of squalene, increased by 2.3-fold. Transcriptome analysis revealed that PCIF1 upregulated genes associated with glycolysis and acetyl-CoA biosynthesis pathways, and also activated the cell wall integrity mitogen-activated protein kinase (MAPK) pathway to improve the cell wall stress response. Importantly, PCIF1 expression notably enhanced squalene and sesquiterpenoid longifolene production in engineered yeast strains, with 2.3-fold and 1.4-fold higher increase, respectively. Conclusion This study presents a PCIF1-based metabolic engineering strategy that could serve as an effective approach for the optimization of terpene biosynthesis in yeast cell factories.
Keywords