Jurnal Informatika (Oct 2022)

Perbandingan Model NBC, SVM, dan C4.5 dalam Mengukur Kinerja Karyawan Berprestasi Pasca Pandemi Covid-19

  • Galih Galih,
  • Mindit Eriyadi

DOI
https://doi.org/10.31294/inf.v9i2.13772
Journal volume & issue
Vol. 9, no. 2
pp. 123 – 130

Abstract

Read online

Pengklasifikasian penilaian kinerja karyawan merupakan salah satu cara meningkatkan mutu pekerja. Penilaian kinerja karyawan sangat penting dalam menentukan karyawan yang baik dalam suatu perusahaan. Proses penilaian kinerja karyawan hanya dinilai secara manual tanpa adanya suatu aplikasi atau sistem. Algoritma yang diterapkan untuk kinerja karyawan memanfaatkan algoritma Naïve Bayes Classifier karena mengacu pada penelitian yang telah dilakukan sebelumnya, terdapat beberapa temuan penelitian. Dengan menggunakan 310 data karyawan yang dibagi menjadi 5 kelompok yaitu Kinerja Sangat Tinggi, Kinerja Tinggi, Kinerja Sesuai Standar, Kinerja rendah dan Kinerja Tidak Efektif, pengujian ini menggunakan tools RapidMiner versi 7.2.0 model algoritma Naïve Bayes Classifier menghasilkan tingkat akurasi 84.52%, algoritma C4.5 menghasilkan tingkat akurasi 74.19% dan sedangkan menggunakan algoritma Support Vector Machine menghasilkan tingkat akurasi 56.13%. Jika menggunakan tools WEKA versi 3.8.0 Model algoritma Naïve Bayes Classifier menghasilkan tingkat akurasi 81.93%, algoritma C4.5 menghasilkan tingkat akurasi 75.80% dan sedangkan menggunakan algoritma Support Vector Machine menghasilkan tingkat akurasi 60.32%. Classifying employee performance appraisals is one way to improve the quality of workers. Employee performance appraisal is very important in determining good employees in a company. The process of appraisal of employee performance is only assessed manually in the absence of an application or system. The algorithm applied to employee performance utilizes the Naïve Bayes Classifier algorithm because it refers to previous research, there are several research findings. Using 310 employee data divided into 5 groups, namely Very High Performance, High Performance, Standard Performance, Low Performance and Ineffective Performance, this test uses the RapidMiner tool version 7.2.0 naïve Bayes Classifier algorithm model resulting in an accuracy rate of 84.52%, the C4.5 algorithm produces an accuracy rate of 74.19% and while using the Support Vector Machine algorithm produces an accuracy rate of 56.13%. If using the WEKA tools version 3.8.0 The Naïve Bayes Classifier algorithm model produces an accuracy rate of 81.93%, the C4.5 algorithm produces an accuracy rate of 75.80% and while using the Support Vector Machine algorithm produces an accuracy rate of 60.32%.

Keywords