BMC Public Health (Jul 2011)

Evaluating Syndromic surveillance systems at institutions of higher education (IHEs): A retrospective analysis of the 2009 H1N1 influenza pandemic at two universities

  • May Larissa,
  • Zhang Ying,
  • Stoto Michael A

DOI
https://doi.org/10.1186/1471-2458-11-591
Journal volume & issue
Vol. 11, no. 1
p. 591

Abstract

Read online

Abstract Background Syndromic surveillance has been widely adopted as a real-time monitoring tool for timely response to disease outbreaks. During the second wave of the pH1N1 pandemic in Fall 2009, two major universities in Washington, DC collected data that were potentially indicative of influenza-like illness (ILI) cases in students and staff. In this study, our objectives were three-fold. The primary goal of this study was to characterize the impact of pH1N1 on the campuses as clearly as possible given the data available and their likely biases. In addition, we sought to evaluate the strengths and weaknesses of the data series themselves, in order to inform these two universities and other institutions of higher education (IHEs) about real-time surveillance systems that are likely to provide the most utility in future outbreaks (at least to the extent that it is possible to generalize from this analysis). Methods We collected a wide variety of data that covered both student ILI cases reported to medical and non-medical staff, employee absenteeism, and hygiene supply distribution records (from University A only). Communication data were retrieved from university broadcasts, university preparedness websites, and H1N1-related on campus media reports. Regional data based on the Centers for Disease Control and Prevention Outpatient Influenza-like Illness Surveillance Network (CDC ILINet) surveillance network, American College Health Association (ACHA) pandemic influenza surveillance data, and local Google Flu Trends were used as external data sets. We employed a "triangulation" approach for data analysis in which multiple contemporary data sources are compared to identify time patterns that are likely to reflect biases as well as those that are more likely to be indicative of actual infection rates. Results Medical personnel observed an early peak at both universities immediately after school began in early September and a second peak in early November; only the second peak corresponded to patterns in the community at large. Self-reported illness to university deans' offices was also relatively increased during mid-term exam weeks. The overall volume of pH1N1-related communication messages similarly peaked twice, corresponding to the two peaks of student ILI cases. Conclusions During the 2009 H1N1 pandemic, both University A and B experienced a peak number of ILI cases at the beginning of the Fall term. This pattern, seen in surveillance systems at these universities and to a lesser extent in data from other IHEs, most likely resulted from students bringing the virus back to campus from their home states coupled with a sudden increase in population density in dormitories and lecture halls. Through comparison of data from different syndromic surveillance data streams, paying attention to the likely biases in each over time, we have determined, at least in the case of the pH1N1 pandemic, that student health center data more accurately depicted disease transmission on campus at both universities during the Fall 2009 pandemic than other available data sources.