BMC Urology (Oct 2019)

Robotic stereotactic ablative radiotherapy for renal cell carcinoma in patients with impaired renal function

  • C. Senger,
  • A. Conti,
  • A. Kluge,
  • D. Pasemann,
  • M. Kufeld,
  • G. Acker,
  • M. Lukas,
  • A. Grün,
  • G. Kalinauskaite,
  • V. Budach,
  • J. Waiser,
  • C. Stromberger

DOI
https://doi.org/10.1186/s12894-019-0531-z
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Robotic stereotactic ablative radiotherapy (SABR) is currently under investigation as a noninvasive treatment option for patients with renal cell carcinoma (RCC). For radiation therapy of RCC, tumor motion and the need for high ablative doses while preserving the remaining renal parenchyma is a challenge. We aimed to analyze the safety and efficacy of robotic radiosurgery in RCC in a specific difficult subgroup of patients with impaired renal function. Methods We retrospectively identified all patients with RCC, treated with robotic SABR and motion compensation in our institution between 2012 and 2017. Either single fraction SABR of 24 or 25 Gy or 3 fractions of 12 Gy prescribed to the 70% isodose line was applied. Local control, overall survival, radiation side effects were evaluated together with renal function and tumor motion. Results We analyzed data of 13 lesions treated in 10 patients with clear cell RCC and a mean age of 70.5 ± 13.6 years (range: 48–87). Prior to SABR, 8 patients underwent previous complete and/or partial nephrectomy, 7 patients presented with chronic kidney disease ≥ stage 3. The median of minimum, mean and maximum planning target volume doses were 23.2, 29.5 and 35.0 Gy for single fraction and 24.4, 42.5 and 51.4 Gy for the three fractions regime. Persistent local control by robotic SABR was achieved in 9 out of 10 patients (92.3% of all lesions) within a median follow-up period of 27 month (range: 15–54). One patient underwent nephrectomy due to progressive disease and sufficient renal function of the contralateral kidney. Renal function remained stable with a mean estimated glomerular filtration rate (eGFR) of 51.3 ± 19.7 ml/min at baseline and 51.6 ± 25.8 ml/min at follow-up. The largest respiratory-induced tumor motion was seen in superior-inferior direction, compensated by the CyberKnife with mean targeting errors of maximal 2.2 mm. Conclusions Robotic SABR is technically feasible for the treatment of RCC in preexisting kidney disease with good local tumor control at about 2 years follow-up. Robotic SABR with motion tracking offers a valid treatment option for patients, who are at increased risk for progression to end-stage renal disease due to partial nephrectomy or ablative techniques.

Keywords