Clinical and Experimental Hypertension (Dec 2023)
FGFR2 modulates the Akt/Nrf2/ARE signaling pathway to improve angiotensin II-induced hypertension-related endothelial dysfunction
Abstract
Background Fibroblast growth factor receptor (FGFR)2 expression was decreased in hypertension patients while its role in hypertension was not explored. This experiment aimed to investigate the expression ofFGFR2 in angiotensin II (Ang II)-induced human umbilical vein endothelial cells (HUVECs) and the role of FGFR2 in improving AngII-induced hypertension-related endothelial dysfunction. Methods AngII-induced HUVECs simulated the hypertension model in vitro. The expression of FGFR2 in Ang II-induced HUVECs and transfected HUVECswas detected by RT-qPCR and western blot. The viability, apoptosis, migration and tube formation ability of Ang II-induced HUVECs were analyzed by Methyl Thiazolyl Tetrazolium (MTT) assay, flow cytometry analysis, wound healing assay and tube formation assay.Detectionof lactate dehydrogenase (LDH), caspase 3, Nitric Oxide (NO) and oxidative stress levels was conducted by assay kits and reactive oxygen species (ROS) level was detected by DCFH-DA assay. The expression of apoptosis-related proteins, protein kinase B(Akt)/nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway-related proteins, phospho(p)-endothelial nitric oxide synthase (eNOS) and eNOS was determined by western blot. Results The expression of FGFR2 was decreased in Ang II-induced HUVECs. FGFR2overexpression increased viability, suppressed apoptosis and oxidative stress, and improve endothelial dysfunction of AngII-induced HUVECs through activating the Akt/Nrf2/ARE signaling pathway. MK-2206 (Akt inhibitor) could weaken the effect of FGFR2overexpression to reduce viability, promote apoptosis and oxidative stress, and aggravate endothelial dysfunction of Ang II-inducedHUVECs. Conclusion Inconclusion, FGFR2activated the Akt/Nrf2/ARE signaling pathway to improve AngII-induced hypertension-related endothelial dysfunction.
Keywords