Biosensors (Apr 2023)
Fluorescent Sensing Platforms for Detecting and Imaging the Biomarkers of Alzheimer’s Disease
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease with clinical symptoms of memory loss and cognitive impairment. Currently, no effective drug or therapeutic method is available for curing this disease. The major strategy used is to identify and block AD at its initial stage. Thus, early diagnosis is very important for intervention of the disease and assessment of drug efficacy. The gold standards of clinical diagnosis include the measurement of AD biomarkers in cerebrospinal fluid and positron emission tomography imaging of the brain for amyloid-β (Aβ) deposits. However, these methods are difficult to apply to the general screening of a large aging population because of their high cost, radioactivity and inaccessibility. Comparatively, blood sample detection is less invasive and more accessible for the diagnosis of AD. Hence, a variety of assays based on fluorescence analysis, surface-enhanced Raman scattering, electrochemistry, etc., were developed for the detection of AD biomarkers in blood. These methods play significant roles in recognizing asymptomatic AD and predicting the course of the disease. In a clinical setting, the combination of blood biomarker detection with brain imaging may enhance the accuracy of early diagnosis. Fluorescence-sensing techniques can be used not only to detect the levels of biomarkers in blood but also to image biomarkers in the brain in real time due to their low toxicity, high sensitivity and good biocompatibility. In this review, we summarize the newly developed fluorescent sensing platforms and their application in detecting and imaging biomarkers of AD, such as Aβ and tau in the last five years, and discuss their prospects for clinical applications.
Keywords