Lithosphere (Jan 2022)

Evolution of Fault-Zone Hydromechanical Properties in Response to Different Cementation Processes

  • C. R. Romano,
  • R. T. Williams

DOI
https://doi.org/10.2113/2022/1069843
Journal volume & issue
Vol. 2022, no. 1

Abstract

Read online

AbstractProgressive cementation and sealing of fault-localized fractures impact crustal mass transport and the recovery of fault strength following slip events. We use discrete fracture network (DFN) models to examine how fracture sealing during end-member cementation mechanisms (i.e., reaction- versus transported-limited cementation) influences the partitioning of fluid flow through time. DfnWorks was used to generate randomized fracture networks parameterized with fracture orientation data compiled from field studies. Single-phase flow simulations were performed for each network over a series of timesteps, and network parameters were modified to reflect progressive fracture sealing consistent with either reaction- or transport-limited crystal growth. Results show that when fracture cementation is reaction-limited, fluid flow becomes progressively channelized into a smaller number of fractures with larger apertures. When fracture cementation is transport-limited, fluid flow experiences progressive dechannelization, becoming more homogeneously distributed throughout the fracture network. These behaviors are observed regardless of the DFN parameterization, suggesting that the effect is an intrinsic component of all fracture networks subjected to the end-member cementation mechanisms. These results have first-order implications for the spatial distribution of fluid flow in fractured rocks and recovery of permeability and strength during fault/fracture healing in the immediate aftermath of fault slip.