Nanomaterials (Sep 2017)

Development and Biocompatibility Evaluation of Photocatalytic TiO2/Reduced Graphene Oxide-Based Nanoparticles Designed for Self-Cleaning Purposes

  • Ionela Cristina Nica,
  • Miruna S. Stan,
  • Marcela Popa,
  • Mariana Carmen Chifiriuc,
  • Gratiela G. Pircalabioru,
  • Veronica Lazar,
  • Iuliana Dumitrescu,
  • Lucian Diamandescu,
  • Marcel Feder,
  • Mihaela Baibarac,
  • Marin Cernea,
  • Valentin Adrian Maraloiu,
  • Traian Popescu,
  • Anca Dinischiotu

DOI
https://doi.org/10.3390/nano7090279
Journal volume & issue
Vol. 7, no. 9
p. 279

Abstract

Read online

Graphene is widely used in nanotechnologies to amplify the photocatalytic activity of TiO2, but the development of TiO2/graphene composites imposes the assessment of their risk to human and environmental health. Therefore, reduced graphene oxide was decorated with two types of TiO2 particles co-doped with 1% iron and nitrogen, one of them being obtained by a simultaneous precipitation of Ti3+ and Fe3+ ions to achieve their uniform distribution, and the other one after a sequential precipitation of these two cations for a higher concentration of iron on the surface. Physico-chemical characterization, photocatalytic efficiency evaluation, antimicrobial analysis and biocompatibility assessment were performed for these TiO2-based composites. The best photocatalytic efficiency was found for the sample with iron atoms localized at the sample surface. A very good anti-inhibitory activity was obtained for both samples against biofilms of Gram-positive and Gram-negative strains. Exposure of human skin and lung fibroblasts to photocatalysts did not significantly affect cell viability, but analysis of oxidative stress showed increased levels of carbonyl groups and advanced oxidation protein products for both cell lines after 48 h of incubation. Our findings are of major importance by providing useful knowledge for future photocatalytic self-cleaning and biomedical applications of graphene-based materials.

Keywords