Streptococcus suis 5’-nucleotidases contribute to adenosine-mediated immune evasion and virulence in a mouse model
Simin Deng,
Haojie Li,
Chang Zhou,
Jingyan Fan,
Fuxin Zhu,
Gexuan Jin,
Jiali Xu,
Jing Xia,
Jing Wang,
Zheng Nie,
Rui Zhou,
Houhui Song,
Changyong Cheng
Affiliations
Simin Deng
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Haojie Li
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Chang Zhou
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Jingyan Fan
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Fuxin Zhu
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Gexuan Jin
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Jiali Xu
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Jing Xia
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Jing Wang
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Zheng Nie
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Rui Zhou
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
Houhui Song
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Changyong Cheng
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
Streptococcus suis (S. suis) is an important swine bacterial pathogen and causes human infections, leading to a wide range of diseases. However, the role of 5’-nucleotidases in its virulence remains to be fully elucidated. Herein, we identified four cell wall-anchored 5’-nucleotidases (Snts) within S. suis, named SntA, SntB, SntC, and SntD, each displaying similar domains yet exhibiting low sequence homology. The malachite green reagent and HPLC assays demonstrated that these recombinant enzymes are capable of hydrolysing ATP, ADP, and AMP into adenosine (Ado), with the hierarchy of catalytic efficiency being SntC>SntB>SntA>SntD. Moreover, comprehensive enzymatic activity assays illustrated slight variances in substrate specificity, pH tolerance, and metal ion requirements, yet highlighted a conserved substrate-binding pocket, His–Asp catalytic dyad, metal, and phosphate-binding sites across Snts, with the exception of SntA. Through bactericidal assays and murine infection assays involving in site-mutagenesis strains, it was demonstrated that SntB and SntC collaboratively enhance bacterial survivability within whole blood and polymorphonuclear leukocytes (PMNs) via the Ado-A2aR pathway in vitro, and within murine blood and organs in vivo. This suggests a direct correlation between enzymatic activity and enhancement of bacterial survival and virulence. Collectively, S. suis 5’-nucleotidases additively contribute to the generation of adenosine, influencing susceptibility within blood and PMNs, and enhancing survival within blood and organs in vivo. This elucidation of their integral functions in the pathogenic process of S. suis not only enhances our comprehension of bacterial virulence mechanisms, but also illuminates new avenues for therapeutic intervention aimed at curbing S. suis infections.