مدل‌سازی پیشرفته ریاضی (Dec 2020)

مقایسه تصادفی سیستم‌های ‎k‎ از ‎n‎ براساس تابع دگرشکلی

  • الهام خالق پناه نوقابی,
  • مجید رضائی,
  • مجید چهکندی

DOI
https://doi.org/10.22055/jamm.2020.30655.1748
Journal volume & issue
Vol. 10, no. 2
pp. 356 – 378

Abstract

Read online

یکی از مسائل مهم در نظریه قابلیت اعتماد‏، مقایسه‌ی تصادفی سیستم‌های منسجم است. نتایج زیادی در بحث مقایسه‌ی تصادفی سیستم‌ها با مولفه‌های مستقل و هم‌توزیع (‎$ ‎IID‎ $‎) ارائه شده است. در این مقاله‏ ‏به بررسی سیستم‌های ‎$k$‎ از ‎$n$ می‌پردازیم که نقش مهمی در مطالعه‌ی قابلیت اعتماد سیستم‌های مهندسی بازی می‌کنند‏. بر اساس مفهوم تابع دگرشکلی‏ نتایجی در ارتباط با مقایسه‌ی آزاد توزیع سیستم‌های ‎$k$‎ از ‎$n$ با مولفه‌های وابسته به دست خواهیم آورد. شرایطی روی توابع توزیع دگرشکلی سیستم‌های ‎$k$‎ از ‎$n$ یا مانده‌ی عمر آن‌ها فراهم نمودیم که ترتیب بین طول عمر یا مانده‌ی عمر سیستم‌ها را نتیجه می‌دهد. در حالت خاص‏، با در نظر گرفتن دو مفصل بقای پرکاربرد (فارلی-گامبل-مورگنسترن و کلایتون اکاس)‏ به مقایسه‌ی تصادفی سیستم‌های ‎$k$‎ از ‎$n$ بر اساس ‎$k$‎ و ‎$n$ می‌پردازیم. با ارائه چند مثال نیز نشان می‌دهیم برخی از نتایجی که در حالت استقلال برای مقایسه‌ی تصادفی سیستم‌های‎ ‎$k$‎ از ‎$n$ برقرار است در حالت وابسته نقض می‌شود.

Keywords