Remote Sensing (Mar 2022)

Effects of UAV-LiDAR and Photogrammetric Point Density on Tea Plucking Area Identification

  • Qingfan Zhang,
  • Maosheng Hu,
  • Yansong Zhou,
  • Bo Wan,
  • Le Jiang,
  • Quanfa Zhang,
  • Dezhi Wang

DOI
https://doi.org/10.3390/rs14061505
Journal volume & issue
Vol. 14, no. 6
p. 1505

Abstract

Read online

High-cost data collection and processing are challenges for UAV LiDAR (light detection and ranging) mounted on unmanned aerial vehicles in crop monitoring. Reducing the point density can lower data collection costs and increase efficiency but may lead to a loss in mapping accuracy. It is necessary to determine the appropriate point cloud density for tea plucking area identification to maximize the cost–benefits. This study evaluated the performance of different LiDAR and photogrammetric point density data when mapping the tea plucking area in the Huashan Tea Garden, Wuhan City, China. The object-based metrics derived from UAV point clouds were used to classify tea plantations with the extreme learning machine (ELM) and random forest (RF) algorithms. The results indicated that the performance of different LiDAR point density data, from 0.25 (1%) to 25.44 pts/m2 (100%), changed obviously (overall classification accuracies: 90.65–94.39% for RF and 89.78–93.44% for ELM). For photogrammetric data, the point density was found to have little effect on the classification accuracy, with 10% of the initial point density (2.46 pts/m2), a similar accuracy level was obtained (difference of approximately 1%). LiDAR point cloud density had a significant influence on the DTM accuracy, with the RMSE for DTMs ranging from 0.060 to 2.253 m, while the photogrammetric point cloud density had a limited effect on the DTM accuracy, with the RMSE ranging from 0.256 to 0.477 m due to the high proportion of ground points in the photogrammetric point clouds. Moreover, important features for identifying the tea plucking area were summarized for the first time using a recursive feature elimination method and a novel hierarchical clustering-correlation method. The resultant architecture diagram can indicate the specific role of each feature/group in identifying the tea plucking area and could be used in other studies to prepare candidate features. This study demonstrates that low UAV point density data, such as 2.55 pts/m2 (10%), as used in this study, might be suitable for conducting finer-scale tea plucking area mapping without compromising the accuracy.

Keywords