Scientific Reports (Apr 2023)
Elemental bioimaging and transcriptomics reveal unchanged gene expression in mouse cerebellum following a single injection of Gadolinium-based contrast agents
Abstract
Abstract Gadolinium (Gd) deposition in the brain, first and foremost in the dentate nucleus in the cerebellum, following contrast enhanced MRI, rose awareness of potential adverse effects of gadolinium-based contrast agent (GBCA) administration. According to previous in vitro experiments, a conceivable side-effect of Gd deposition could be an alteration of gene expression. In the current study, we aimed to investigate the influence of GBCA administration on gene expression in the cerebellum of mice using a combination of elemental bioimaging and transcriptomics. In this prospective animal study, three groups of eight mice each were intravenously injected with either linear GBCA gadodiamide, macrocyclic GBCA gadoterate (1 mmol GBCA/kg body weight) or saline (NaCl 0.9%). Animals were euthanized four weeks after injection. Subsequently, Gd quantification via laser ablation-ICP-MS and whole genome gene expression analysis of the cerebellum were performed. Four weeks after single application of GBCAs to 24–31 days old female mice, traces of Gd were detectable in the cerebellum for both, the linear and macrocyclic group. Subsequent transcriptome analysis by RNA sequencing using principal component analysis did not reveal treatment-related clustering. Also differential expression analysis did not reveal any significantly differentially expressed genes between treatments.