Agronomy (Sep 2020)

Increasing Levels of Supplemental LED Light Enhances the Rate Flower Development of Greenhouse-grown Cut Gerbera but does not Affect Flower Size and Quality

  • David Llewellyn,
  • Katherine Schiestel,
  • Youbin Zheng

DOI
https://doi.org/10.3390/agronomy10091332
Journal volume & issue
Vol. 10, no. 9
p. 1332

Abstract

Read online

To investigate the influence of supplemental lighting intensity on the production (i.e., rate of flower development, flower quality, and yield) of cut gerbera during Canada’s supplemental lighting season (November to March), trials were carried out at a research greenhouse. Five supplemental light emitting diode (LED) light intensity (LI) treatments provided canopy-level photosynthetic photon flux densities (PPFD) ranging from 41 to 180 µmol m−2 s−1. With a 12-h photoperiod, the treatments provided 1.76 to 7.72 mol m−2 d−1 of supplemental light. Two cultivars of cut gerbera (Gerbera jamesonii H. Bolus ex Hook.f) were used to evaluate vegetative growth and flower production. Plugs of ‘Ultima’ were assessed for vegetative growth and rate of flower development. There were minor LI treatment effects on number of leaves and chlorophyll content index and flowers from plants under the highest versus the lowest LI matured 10% faster. Reproductively mature ‘Panama’ plants were assessed for flower yield and quality. ‘Panama’ flowers from the highest LI treatment had shorter stems than the three lowest LI treatments, and flowers from the middle LI treatment had larger diameter than the other treatments. Flowers from the lowest LI treatment had lower fresh mass than the three highest LI treatments. There were linear relationships between LI and numbers of flowers harvested, with the highest LI treatment producing 10.3 and 7.0 more total and marketable flowers per plant than the lowest LI treatment. In general, increasing levels of supplemental light had only minor effects on vegetative growth (young plants) and size and quality of harvested flowers (mature plants), but flowers from plants grown under higher LIs were more numerous and matured faster.

Keywords