International Journal of Extreme Manufacturing (Jan 2024)

Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication

  • Han Xu,
  • Renzhi Hu,
  • Shuai Chen,
  • Junhong Zhu,
  • Chi Zhou,
  • Yong Chen

DOI
https://doi.org/10.1088/2631-7990/ad2e14
Journal volume & issue
Vol. 6, no. 3
p. 035004

Abstract

Read online

Mask image projection-based vat photopolymerization (MIP-VPP) offers advantages like low cost, high resolution, and a wide material range, making it popular in industry and education. Recently, MIP-VPP employing liquid crystal displays (LCDs) has gained traction, increasingly replacing digital micromirror devices, particularly among hobbyists and in educational settings, and is now beginning to be used in industrial environments. However, LCD-based MIP-VPP suffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and its direct-contact configuration in MIP-VPP machines, leading to rough surfaces on the 3D-printed parts. Here, we propose a vibration-assisted MIP-VPP method that utilizes a microscale vibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform. By maintaining the same fabrication speed, our technique generates a smoother, non-pixelated mask image, reducing the roughness on flat surfaces and boundary segments of 3D-printed parts. Through light intensity modeling and simulation, we derived an optimal vibration pattern for LCD mask images, subsequently validated by experiments. We assessed the surface texture, boundary integrity, and dimensional accuracy of components produced using the vibration-assisted approach. The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP, enabling its promising applications in sectors like the production of 3D-printed optical devices and others.

Keywords