European Physical Journal C: Particles and Fields (May 2017)
Analysis of $$\Omega _c(3000)$$ Ω c ( 3000 ) , $$\Omega _c(3050)$$ Ω c ( 3050 ) , $$\Omega _c(3066)$$ Ω c ( 3066 ) , $$\Omega _c(3090)$$ Ω c ( 3090 ) and $$\Omega _c(3119)$$ Ω c ( 3119 ) with QCD sum rules
Abstract
Abstract In this article, we assign $$\Omega _c(3000)$$ Ω c ( 3000 ) , $$\Omega _c(3050)$$ Ω c ( 3050 ) , $$\Omega _c(3066)$$ Ω c ( 3066 ) , $$\Omega _c(3090)$$ Ω c ( 3090 ) and $$\Omega _c(3119)$$ Ω c ( 3119 ) to the P-wave baryon states with $$J^P={\frac{1}{2}}^-$$ J P = 1 2 - , $${\frac{1}{2}}^-$$ 1 2 - , $${\frac{3}{2}}^-$$ 3 2 - , $${\frac{3}{2}}^-$$ 3 2 - and $${\frac{5}{2}}^-$$ 5 2 - , respectively, and study them with the QCD sum rules by introducing an explicit relative P-wave between the two s quarks. The predictions support assigning $$\Omega _c(3050)$$ Ω c ( 3050 ) , $$\Omega _c(3066)$$ Ω c ( 3066 ) , $$\Omega _c(3090)$$ Ω c ( 3090 ) and $$\Omega _c(3119)$$ Ω c ( 3119 ) to the P-wave baryon states with $$J^P={\frac{1}{2}}^-$$ J P = 1 2 - , $${\frac{3}{2}}^-$$ 3 2 - , $${\frac{3}{2}}^-$$ 3 2 - and $${\frac{5}{2}}^-$$ 5 2 - , respectively, where the two s quarks are in relative P-wave, while $$\Omega _c(3000)$$ Ω c ( 3000 ) can be assigned to the P-wave baryon state with $$J^{P}={\frac{1}{2}}^-$$ J P = 1 2 - , where the two s quarks are in relative S-wave.
Keywords