Water (Apr 2019)
Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure–Karst Aquifer
Abstract
Foreseen construction of a highway tunnel in the northern part of the Veľká Fatra Mts. (Slovakia) triggered the need for extensive hydrogeological investigations. The projected tunnel axis would cut through a large body buildup of Middle Triassic carbonate rocks. Dolomites and limestones with fissure–karstic permeability are surrounded by less-permeable marls, so that all springs dewatering this uplifted plate of carbonates are found above the erosion base on its edges. Detailed, hourly-based discharge monitoring of all four major springs was performed during the spring and summer period of 2014. In the meantime, groundwater table observations in two boreholes, located in the center of the fissure–karst aquifer, were run in the same time interval. Based on air temperature and precipitation records, the 2013–2014 winter period was practically without snow cover. In the middle of March 2014, an intense rainfall event caused a sudden rise of the groundwater table in the TK-04 borehole located in the southern part of the carbonate plate. Spreading of this singular hydraulic impulse throughout the structure was differently registered at individual springs within the time shift span of 1.38 to 65.25 days. Groundwater level rise of 0.40 m in the TK-04 borehole was postponed in 5.33 days. The response time of spring discharge to sudden groundwater table rise within the structure occurred later at springs with a higher water temperature. Water temperature differences between individual springs were still within the 2.46 °C narrow interval (5.57–8.03 °C). The vertical component of groundwater flux should play an important role even in a relatively simple, plate-shaped mountainous karstic aquifer fully uplifted above the erosional base, as was the case of the investigated Kopa Mt. hydrogeological structure.
Keywords